Solutions of equations of viscous hydrodynamics via stochastic perturbations of inviscid flows

نویسنده

  • Yuri E. Gliklikh
چکیده

We introduce a special stochastic perturbation of the flow of diffuse matter as a curve in the group of diffeomorphisms of flat n-dimensional torus such that the perturbed system yields a solution of Burgers equation in the tangent space at unit of the diffeomorphism group. The same perturbation of the flow of perfect incompressible fluid yields a solution of Reynolds type equation but under some special external force on the diffeomorphism group it transforms into a solution of Navier-Stokes equation without external force.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability of Two-Dimensional Viscous Incompressible Flows under Three-Dimensional Perturbations and Inviscid Symmetry Breaking

In this article we consider weak solutions of the three-dimensional incompressible fluid flow equations with initial data admitting a one-dimensional symmetry group. We examine both the viscous and inviscid cases. For the case of viscous flows, we prove that Leray-Hopf weak solutions of the threedimensional Navier-Stokes equations preserve initially imposed symmetry and that such symmetric flow...

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

Simulation of Pitching and Heaving Airfoil with Oscillation of Flow Boundary Condition

A pressure based implicit procedure to solve the Euler and Navier-Stokes equation is developed to predict transonic viscous and inviscid flows around the pitching and heaving airfoils with a high reslution scheme. In this process, nonorthogonal and non moving mesh with collocated finite volume formulation are used. In order to simulate pitching or heaving airfoil, oscillation of flow boundary c...

متن کامل

Generalized Circle and Sphere Theorems for Inviscid and Viscous Flows

The circle and sphere theorems in classical hydrodynamics are generalized to a composite double body. The double body is composed of two overlapping circles/spheres of arbitrary radii intersecting at a vertex angle π/n, n an integer. The Kelvin transformation is used successively to obtain closed form expressions for several flow problems. The problems considered here include two-dimensional an...

متن کامل

An approach to the Riemann problem for SPH inviscid ideal flows a reformulation for the state equation

In the physically non viscous fluid dynamics, ”shock capturing” methods adopt either an artificial viscosity contribution or an appropriate Riemann solver algorithm. These techniques are necessary to solve the strictly hyperbolic Euler equations if flow discontinuities (the Riemann problem) must be solved. A necessary dissipation is normally used in such cases. An explicit artificial viscosity ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009